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A finite element method is used to solve the full Navier-Stokes and energy 
equations for the problems of laminar flow and heat transfer characteristics of air 
around three isothermal heated horizontal cylinders in a staggered tube bank and 
around four isothermal heated horizontal cylinders in an in line tube bank. The 
variations of surface shear stress, pressure and Nusselt number are obtained over 
the entire cylinder surface, including the zone beyond the separation point. The 
predicted values of total drag, pressure drag and friction drag coefficients, average 
Nusselt number, and the plots of velocity flow fields and isotherms are also 
presented. 

Keywords: laminar flow, heat transfer, tube banks, finite element 
solutions, air f low 

Introduction 

The study of flow normal to a bank of tubes continues to 
attract interest because of the importance of this flow 
configuration in the design of heat exchangers. Many 
related engineering applications of the heat transfer and 
flow characteristics of tubes in staggered or in-line tube 
banks have been presented. Zhukauskas 1 has studied the 
heat transfer from tubes in cross flow. Bergelin et al 2 have 
presented their investigation of heat transfer and fluid 
friction during flow across banks of tubes. Massey 3 has 
predicted the flow and heat transfer in banks of tubes 
in cross flow. Bergelin et aP have investigated three 
tube arrangements in unbaflled tubular heat 
exchangers. Launder and Massey 5 have presented their 
numerical prediction of viscous flow and heat transfer in 
tube banks. Fujii et al 6 have presented a numerical 
analysis of laminar flow and heat transfer of air in an in- 
line tube bank. Weaver and Abd-Rabbo 7 have presented 
a flow visualization study of a square array of tubes in 
water cross flow. Aiba et al 8 have investigated 
experimentally heat transfer around a tube in a staggered 
tube bank. Antonopoulos 9 has studied the heat transfer 
in tube assemblies under conditions of laminar axial, 
transverse and inclined flow. 

In the work described here, the problems of heat 
transfer and flow characteristics around three cylinders in 
staggered tube banks and four cylinders in in-line tube 
banks are solved by a finite element method. The method 
is based on the solution of the full Navier-Stokes and 
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energy equations. The numerical results are obtained 
over the entire cylinder surface, including the zone 
beyond the separation point. 

Problem s t a t e m e n t  

Consider three and four isothermal heated horizontal 
cylinders of radius Ro and temperature Tw, placed in a 
uniform free stream of temperature T= and velocity uo~ in 
staggered and in-line arrangements, respectively, with 
spacing L between the cylinder centres. The cylinders are 
considered to be long enough so that the end effects can be 
neglected, and accordingly the flow field can be assumed 
to be two-dimensional. Using Cartesian coordinates with 
x and y axes, the flow configurations and the calculated 
flow fields are shown in Figs 1 and 2, respectively. 

The temperature difference AT (=Tw-To~) is 
assumed to have a neglegible effect on the fluid properties, 
and the fluid is incompressible. The dimensionless 
governing equations can be written as follows. 

Continuity equation: 

ctu ~v ~x ~-~y=O (1) 

Momentum equations: 

~u ~u ~p 1 [~2u g2u'~ 

u~x + V ~y = - O--~ -4- -R~e L ff~x2 + ~y2 ) (2) 

#v #v #p 1 1"02v dZv'~ u +V y- (3) 
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Fig 1 Flow configurations and coordinates: (a) three cylinders; (b) four cylinders 

/- Symmetric 
axis 

Energy equation: 

8~b. 8~ 1 [t72~b t72~b'~ 

where 

u* v* T -  T~ p* 
u = - -  v= ~ = - -  p -  

u~ u~ Tw-T~ pu~ 

x* y* u~D #c 
x = ~ -  y = ~  Re= v P r = ~  Pe= Pr Re 

(4) 

Finite e lement  solut ion 

Owing to symmetry of the flow field, only one half of the 
total domain of the flow field need be considered. The 
calculated flow domains are discretized into 642 elements 
for the three-cylinder case and 725 elements for the four- 

cylinder case as shown in Figs 3(a) and 3(b), respectively. 
All the elements are isoparametric quadrilateral, 
containing 8 nodes, one at each corner and one at the 
midpoint of each side of the element. All eight nodes are 
associated with velocities, and only corner nodes with 
pressure. Following an accepted practice mentioned by 
Taylor and Hughes 1° the variation in pressure is 
depicted by shape functions M t of one order lower than 
those, N j, for defining the velocities and temperature: 

8 8 

u= ~ Nju~ v= ~ N iv j 
j = l  / = l  

8 4 

q~ = ~ Njdpj p= ~ Mtp, (5) 
j = ]  t = l  

After employing the Galerkin weighted residual 
approach, Eqs (1-4) take the form of non-linear assembled 
integral matrix equations. There is a standard procedure 

Notat ion  

C 
CD 
Cf 

Cp 
D 
h 
K 
L 
Ml 
Ni 

Nu, Nu 

P 
P*, Poo 

Pe 
Pr 
Re 
Ro 
T 
Tw 

Specific heat 
Total drag coefficient 
Friction drag coefficient 
Pressure drag coefficient 
Diameter of cylinder 
Local heat transfer coefficient 
Thermal conductivity 
Spacing between centres of cylinders 
Shape function 
Shape function 

Local and average Nusselt numbers, 
respectively 
Dimensionless pressure = P*/pu~ 
Pressure and free stream pressure, 
respectively 
Peclet number = Re Pr 
Prandtl number = #c/K 
Reynolds number = Du 0o/v 
Radius of cylinder 
Temperature 
Temperature on cylinder surface (fixed 
value) 
Free stream temperature 

U 

U* 

Uoo 
I) 

V* 

X 
X 

Y 
Y 

y* 

0 
# 
V 

P 
%'w 
T* 
¢ 

Dimensionless x-direction component of 
velocity = u*/u~ 
x-direction component of velocity 
Free stream velocity 
Dimensionless Y-direction component of 
velocity -~ v*/u~ 
Y-direction component of velocity 
x-direction axis 
Dimensionless x-direction coordinate 
= x*/D 
x-direction coordinate 
Y-direction axis 
Dimensionless Y-direction 
= y*/D 
Y-direction coordinate 
Coefficient of volumetric thermal expansion 
Plane angle 
Dynamic viscosity 
Kinematic viscosity ==-l~/P 
Density of fluid 
Dimensionless surface shear stress, %*/pu2 
Surface shear stress 
Dimensionless 
temperature = T -  T~/Tw- T~ 

coordinate 
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Fig 2 The calculated flow domain, boundary conditions 
and coordinates of the flow field: (a) three cylinders; (b) 
four cylinders 

in evaluating the above integrations, which is mentioned 
by Taylor and Hughes ~°. This involves: (i) the 
normalization of the coordinates, and (ii) the use of the 
Gauss-Legendre quadrature scheme. In the present 
work, the 3 x 3 and 3 x ! Gaussian integration sampling 
point schemes are used for the surface and line integrals, 
respectively. The resultant non-linear asymmetric matrix 
equations are solved by a frontal width method and a 
Newton-Raphson iterative process. 

A c c u r a c y  a n d  c o n v e r g e n c y  

The calculated flow domain is discretized into 73 8-node 
element to solve the problem of combined convection 
from a heated horizontal circular cylinder for Re = 20 as 
well as Gr= 0 and 1600. The comparisons of the results 
with those of Badr 11 are satisfactory (the differences of 
average Nusselt number being within 1%). In the present 
work, a few discretized element numbers were used to find 
one suitable to obtain a convergent result. It was found 
that 642 elements for the three-cylinder case and 725 
elements for the four-cylinder case could provide a very 
good convergent numerical result. The numerical work 
was done on a CDC Cyber 172 computer. The minimum 
CPU time was 785 s, and the maximum CPU time was 
2344 s. 

P h y s i c a l  p a r a m e t e r s  

(0 Shear stress 

The shear stress is defined as 

* -  (~Ut* ~U°°  ~Ut (6) 
z * - P S n * =  D 8n 

where #uffdn denotes the dimensionless derivative of 
velocity tangential to the normal direction at the cylinder 
surface• 

The dimensionless shear stress is defined as 

z*~ u But 1 ~ut 
- (7) 

Tw-- 2 -puo~D 8n Re 8n 
pu 

(it) Friction drag coefficient 

The friction drag coefficient is defined as 

f l  :~ 2Zw Cf = sin 0 r dO 
D 

(iO Pressure drag coefficient 
The total pressure drag force is 

fo Fp = P* cos 0 r dO 

The pressure drag coefficient is defined as 

Fv 
CP-½ pu% D 

(8) 

(9) 

( lo)  

(iv) Total drag coefficient 

The total drag coefficient is the summation of friction 
drag and pressure drag coefficients: 

CD=Cr+Cp (11) 

II II II 

i . , ' i a i i i a  

a 

J 

b 

. . . . . . . . . .  [ 

11111 ..~._ 
1|111 

, J _ .  

] w m  i ' l  

Fig 3 Element discretization of the calculated flow 
domain: (a) three-cylinder case; (b) four-cylinder case 
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Fig 4 Total drag, pressure drag and friction drag 
coefficients, Co, Cp and C I, for the three-cylinder case 
(L = 1.25D) 
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Fig 5 Total drag, pressure drag and friction drag 
coefficients, Co, Cp and Cy, for the four-cylinder case 
(L=2.0D) 
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Fig 6 Average Nusselt number Nu versus Reynolds 
number Re 

(v) Nusse l t  n u m b e r  

Since the conductive heat transfer rate of the fluid over the 
solid boundary equals its convective heat transfer rate, 

1 
- K V * T = h ( T . - T ~ )  or - K s V d p = h  

and the local Nusselt number is 

h D _ V q~ = t3 N j 
Nu= k = --~-n q~J (12) 

where j =  1,2 . . . . .  8. The average Nusselt number is 
defined as 

_ 1 ~2~ 
N u - ~  j ° NudO (13) 

Results and discussions 

The variations of total drag, pressure drag and friction 
drag coefficients with Re for the three-cylinder and four- 
cylinder cases are shown in Figs 4 and 5, respectively. And 
the variations of average Nusselt number with Re for the 
three-cylinder and four-cylinder cases are shown in Fig 6. 
It can be seen from Figs 4 to 6 that for the case of 
Re = 20, the greater the value of L the greater will be the 
values of Nu, Cf, Cp and CD for the let cylinder. For  the 
2nd cylinder, the greater the value of L the greater will be 
the values of the Nu and Cf but the smaller will be those of 
Cp and CD. It can also be seen that the greater the value of 
Re the greater will be Nu but the smaller will be Cf, Cp and 
CD except for the values of Cp and CD for the 2nd cylinder 
of the three-cylinder case when Re > 80. It is shown that 
the experimental data on CD from Ref 12, and the 
previous numerical results of Nu presented by Badr ~ 1, are 
close to those for the let cylinder, especially for the case of 
high Re or L. 

The dimensionless surface shear stress distri- 
butions for the three-cylinder and four-cylinder cases are 
shown in Figs 7 and 8, respectively. It is clear from Fig 7 
that for the three-cylinder case, increase in Re causes a 
significant decrease in the upper region of the 1 st cylinder 
from 0 ° to 135 ° and causes a quite complicated variation 
in the other region of the let cylinder and the entire region 
of the 2nd cylinder. From Fig 5 it can be seen that for the 
situation of L = l . 2 5 D  the Cf value for the let 
cylinder decreases as Re increases, and the Cf value for the 
2nd cylinder remains almost constant. In Fig 8 it is shown 
that the variations of surface shear stress for the let and 
2nd cylinders of the four-cylinder case with L = 2.0D are 
similar; increase in Re results in a significant decrease in 
Zw for most of the region except near the lower front 
(0= 360 °) and rear stagnation (0 = 180 °) points. For both 
the three-cylinder and four-cylinder cases in Figs 7 and 8, 
the greater the value of Re the closer will be zw. Thus, it is 
shown in Figs 4 and 5 that the greater the value of Re the 
closer will be Cf. It can be seen from Eq (7) that Re z, = 
~ut/dn. Where Re z,  <~ 0 separation flow occurs. It is also 
clear from Figs 7 and 8 that increase in Re tends to create 
an earlier separation flow near the rear stagnation points 
(0 = 180 °) of the 1st and 2nd cylinders (Badr ~1 predicted 
the same phenomenon for the situation of a single 
cylinder) but the effects of the increase in Re on the shift of 
the separation flow near the upper and lower front 
stagnation points (0 = 0 ° and 0 = 360 °) are complicated. 

294 Vol 7, No 4, December 1986 



Finite element solutions of laminar f low and heat transfer of air in a staggered and an in-l ine tube bank 

o.6O 

0.50 

0 A 0  

0,30 

0.2( 

0.1 

0.00 

-0.10 

-0.20 

~ R e = 4  

80 \ 

/ 
280 

I 
45.0 

20 ,y 2o 

~]~ "-- ~ -~  140[ 28~0 ~80 2 0 / 4 / ~  I 

I I I I I I 
90.0 185.0 180.0 225.0 270.0 315.0 360.0 

0, deg 

0.25 

0.20 

0.1! 

0.11 

0.05 

0.00 

-0.05 

~ Re = 280 

~ 140 

¢ /  / ~ - N  80 4 2 0  

f ' ' " ~  280 - -- ~ 
I I I I I I I 

22.5 45.0 67.5 90.0 112.6 135.0 157.5 180.0 
e,deg 

Fig 7 Surface shear stress distribution at PR = 0.7for the three-cylinder case (L = 1.25D): (a) upstream cylinder," (b) down 
stream cylinder 
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Fig 9 Surface pressure distribution at Pr=0 .7  for the three-cylinder case (L=l .25D):  (a) upstream cylinder; (b) 
downstream cylinder 

The dimensionless surface pressure distributions 
for the three-cylinder and four-cylinder cases, with a 
comparison with the previous result for a single cylinder 
obtained by Dennis and Chang 13, are given in Figs 9 and 
10, respectively. It can be seen from Fig 9 that increase in 
Re tends to create a quite complicated variation for the 

case of three cylinders with L =  1.25D. It can be seen from 
Fig 4 that for the 1st cylinder Cp decreases as Re increases. 
For  the 2nd cylinder when Re< 80 Cp decreases as Re 
increases; when Re> 80, Cp increases as Re increases. It 
can be seen from Fig 10 that when Re> 20 the shapes of 
the pressure distributions are similar to each other; 
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Fi9 12 Variation of local Nusselt number with 0 at Pr = 0.7for the four-cylinder case (L = 2.0D): (a) upstream cylinder; (b) 
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accordingly a close value of Cp results in Fig 4 for high Re. 
It is also shown in Figs 9(a) and 10(a) that the variation in 
P of a single cylinder (after Dennis and Chang I 3) is close 
to that of the 1st cylinder, especially in the upper region 
(oo-18oo). 

The local Nusselt number distribution for the 

three-cylinder and four-cylinder cases, with a comparison 
with the results for a single cylinder obtained by Badr 11, 
are given in Figs 11 and 12, respectively. It is clear from 
Figs 11 and 12 that increase in Re results in a significant 
increase in Nu for most regions of the cylinders. The 
variations in Nu of the 1st cylinder for both the three- 
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result for a single cylinder obtained by Badr 11 is close to 
that for the 1st cylinder, especially for the upper region 
(0°-180°). 

The velocity flow fields for the three-cylinder and 
four-cylinder cases are shown in Figs 13 and 14, 
respectively. The isotherms for the three-cylinder and 
four-cylinder cases are shown in Figs 15 and 16, 
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Fig 15 Isotherms for three-cylinder case (the isotherms 
are 1.0 to 0.1 in decrements of  0.1): (a) L=2.0D,  Re= 20; 
(b) L = l . 2 5 D ,  Re=20;  (c) L=l .25D,  Re=80;  (d) 
L = 1.25D, Re = 140 

cylinder and four-cylinder cases are similar. The 
maximum Nu occurs at the front stagnation point (0 = 0 ° 
or 0=360 °) and the minimum Nu occurs at the rear 
stagnation point (0= 180°). But the variations in Nu of 
the 2nd cylinders are quite different; Nu is relatively high 
in the front region (00-45 °) for the 2nd cylinder of the 
three-cylinder case, and is relatively small in the upper 
region (0°-180 °) for the 2nd cylinder of the four-cylinder 
case. It can also be seen from Figs 1 l(a) and 12(a) that the 
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Fi9 16 Isotherms for four-cylinder case (isotherms as in 
Fig 15): (a) Re=4,  L=2.0D;  (c) Re=20,  L =  I.7OD; (d) 
Re -- 140, L = 2.0D 
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respectively. It is clear from Figs 13(b) and 13(e) that for 
the same Re (Re = 20), the greater the value of L the 
greater will be the velocity in the lower region (180°-360 ° ) 
of the 1st cylinder and the region between the 1st and 2nd 
cylinders for the three-cylinder case. The heat transfer 
rate depends on both temperature difference (Tw - T) and 
velocity. It can be seen from Fig 15(b) that there exists no 
isotherm line in the region between the 1st and 2nd 
cylinders for Re = 20and L = 1.25D, but not for the case of 
R e = 2 0  and L=2 .0D  shown in Fig 15(a). This 
phenomenon may be interpreted as follows: when L is too 
small, the flow in the lower region of the 1st cylinder is 
blocked by the 2nd cylinder as well as the narrow path 
between the ist and 2nd cylinders; accordingly a smaller 
velocity and a lower heat transfer rate result. It can also be 
seen from Fig 16(c) that for the situation of Re = 20 and 
L =  1.70D there exists no isotherm line in the region 
between the 1st and 2nd cylinders (accordingly a lower 
heat transfer rate results), but not for the case of Re = 20 
and L=2 .0D  shown in Fig 16(b). For fixed values of 
diameter D and viscosity v, the effect of increase in Re is to 
increase velocity. From Figs 15 and 16 it can be seen that 
as Re increases, the isotherm lines move closer to the 
cylinder surface. For the dense isotherm regions, where 
heat transfer rate is high, there exists either a greater 
Tw- T (such as at 0 = 0  ° for the 1st cylinder) or a greater 
velocity (such as the lower region near 0 = 270 ° for the 1 st 
cylinder, the path between the 1st and 2nd cylinders for 
the three-cylinder case with L =  2.0D, and the regions 
near 0 = 90 ° and 270 ° for the four-cylinder case). Increase 
in Re results in earlier separation flow. Accordingly, it can 
be seen from Figs 4 and 5 that the greater the value of Re 
the smaller will be Ct. For the 1st cylinder of the three- 
cylinder case with L = 2.0D, and the 1st and 2nd cylinders 
of the four-cylinder case, the velocity in the lower region 
from 270 ° to 315 ° is greater than that in the upper region 
from 45 ° to 90 ° . This phenomenon may be caused by the 
nozzle effect. Thus, that heat transfer rate of the region 
from 270 ° to 315 ° is greater than that of the region from 
45 ° to 90 ° for the above cases shown in Figs 11 and 12 as 
well as Figs 15 and 16. 

Conclusions 

The finite element solutions of laminar flow and heat 
transfer of air from three cylinders in a staggered 
arrangement and from four cylinders in an in-line 
arrangement were obtained on the basis of the full 
Navier-Stokes and energy equations. The numerical 

results were obtained over the entire surface of the 
cylinder, including the zone beyond the separation point. 
It was found that the effects of the parameter  Re on the 
variations of the total drag, friction drag and pressure 
drag, the increase of heat transfer rate, and the shift of the 
location of separation flow are significant. From 
comparison with previous results for a single cylinder it 
was found that the behaviour of the upper region of the 
upstream cylinder is close to that of a single cylinder. The 
greater the spacing between the cylinders the closer are 
the present results to those for a single cylinder. 
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